设为首页 - 加入收藏
热搜: 美国 安倍 韩国 京报
当前位置: 主页 > 科技新闻 >

人工智能领域最重要的10大里程碑:AlphaGo征服世人

2018-01-14 15:40 [科技新闻] 来源于:网络整理
导读:人工智能领域最重要的10大里程碑:AlphaGo征服世人

人工智能领域最重要的10大里程碑:AlphaGo征服世人

【腾讯科技编者按】业界媒体TechRadar发表文章,称人工智能(AI)是目前科技界最热门的流行语,经过几十年的研究和发展之后,科幻小说中的许多技术已经在这几年慢慢转化为科学现实。这篇文章总结了AI领域的10大里程碑。以下为原文内容:

AI技术已经成为我们生活中非常重要的一部分:AI决定了我们的搜索结果,将我们的声音转化为计算机指令,甚至可以帮助我们对黄瓜进行分类(这件事后文中会提到)。在接下来的几年里,我们将用AI驾驶汽车,回应顾客的询问,以及处理其他无数事情。

但是我们怎么走到这个阶段的?这种强大的新技术是怎么来的?下面就来看看AI技术发展的十大里程碑。

笛卡尔的理念

人工智能的概念并不是突然出现的 ——直到今天,人工智能仍然是哲学辩论的一个主题:机器真的能像人类一样思考吗?机器能成为人类吗?最早想到这个问题的人之一是1637年的笛卡儿。在一本名为《方法论》(Discourse on the Method)的书中,笛卡儿竟然总结出了如今的科技人员必须克服的关键问题和挑战:

“如果为了各种实用性的目的,机器在外形上向人类靠拢,并模仿人类的行为,那么我们仍然应该有两种非常确定的方法来辨识出它们不是真人。”

笛卡尔表示,在他看来,机器永远无法使用言语,或者“把标识放在一起”来“向别人表达想法”,即使我们能够设想出这样的机器,但是“让一台机器对文字进行组合,对别人的话做出有意义的,即便水平和最愚笨的人差不多的回答,那也是不可想象的。”

他还提到了我们现在面临的一个挑战:创建一个广义的AI,而不是狭义的AI——以及当前AI的局限性会如何暴露它并非人类:

“即使有些机器可以在有些事情上可以做得和我们一样好,或者甚至更好,但是其他机器也不可避免地会失败,这就表明它们的行为并非来自于对事物理解,只是一种简单的回应。”

模仿游戏

AI的第二个主要的哲学基准来自计算机科学先驱图灵(Alan Turing)。在1950年时,他提出了“图灵测试”,他称之为“模仿游戏”。这个测试衡量的是,我们什么时候可以宣布智能机器出现了。

这个测试很简单:如果评判者不知道哪一方是人类,哪一方是机器(比如阅读两者之间的文本对话时),那么机器能否骗过评判者,让他以为自己是人类?

有趣的是,图灵对未来的计算做出了一个大胆的预测——他估计到20世纪末,机器就可以通过图灵测试。他说:

“我相信,在大约50年的时间内,人们就有可能用上1GB的存储容量的计算机,通过编程让它们玩模仿游戏,玩得足够逼真,以至于一般的评判者在经过5分钟的对话之后,做出正确的判定的可能性低于70%…… 我相信,到本世纪末,文字的使用和通识教育理念将会发生很大的变化,那时你谈论机器思维,通常不会引发抵触情绪。”

可惜的是,他的预测不太准确。我们现在确实开始看到一些真正让人眼前一亮的AI系统出现,但是在2000年代,AI技术还处在比较原始的阶段。不过硬盘容量在世纪之交时平均为10GB左右,这倒是远远超过了图灵的预测。

第一个神经网络的出现

神经网络其实是一种试错法,它是现代AI的关键概念。从本质上讲,当你训练一个AI系统时,最好的办法就是让系统猜测,接收反馈,然后在继续猜测——不断调整概率,以便让AI系统得出正确答案。

令人惊奇的是,第一个神经网络实际上是在1951年由马尔文·明斯基(Marvin Minsky)和迪恩·艾德蒙兹(Dean Edmonds)创建的,称为“SNARC” ,意思是随机神经模拟增强计算机。它不是由微芯片和晶体管,而是由真空管、电机和离合器制成的。

这台机器可以帮助一只虚拟老鼠解决迷宫难题。系统发送指令,让虚拟老鼠在迷宫里游走,每一次都将其行为的效果反馈到系统里——用真空管来存储结果。这意味着机器能够学习并调整概率,提高虚拟老鼠通过迷宫的机会。

本质上,谷歌当前用于识别照片中的对象的相同过程的非常非常简单的版本。

谷歌目前用来识别照片中的对象也使用了同样的过程,只不过远比它复杂。

第一辆自动驾驶汽车的出现

现在我们提到自动驾驶汽车的时候,可能会想到谷歌Waymo等等,但是令人吃惊的是,在1995年,梅赛德斯-奔驰就改装了一辆汽车,从慕尼黑开到哥本哈根,路上大部分时候都是自动驾驶的。

(编辑:admin)

推荐文章